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Effect of Predators on the Spread of Hantavirus Infection
(Kesan Pemangsa ke atas Penyebaran Jangkitan Hantavirus) 
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ABSTRACT

Hantavirus is a serious disease caused by rodents which can lead to mortality. Many efforts have been carried out by 
researchers to develop and analyze mathematical models of Hantavirus infection. In this paper, the Peixoto and Abramson 
(2006) biodiversity model is modified to include the effect of predators and study the prediction of the modified model. 
When rodent and predator populations are in competition, the predator populations have the effect of reducing the 
prevalence of infection. Predators may be used for control and reduces the number of competing species to stabilize the 
populations at a persistent equilibrium. 
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ABSTRAK

Hantavirus adalah jangkitan serius yang disebabkan oleh tikus yang boleh membawa kepada kematian. Banyak usaha 
yang telah dilakukan oleh para penyelidik untuk membangun dan mengalisis model matematik jangkitan Hantavirus. 
Dalam artikel ini, model biodiversiti Peixoto dan Abramson (2006) diubahsuai untuk memasukkan kesan pemangsa dan 
mengkaji ramalan model. Apabila populasi tikus dan pemangsa dalam persaingan, populasi pemangsa memberi kesan 
pengurangan kekerapan jangkitan tikus. Pemangsa boleh digunakan untuk mengawal dan mengurangkan bilangan 
spesies yang bersaing untuk menstabilkan populasi pada keseimbangan yang berterusan. 

Kata kunci: jangkitan Hantavirus; model biodiversiti; model matematik; model pemangsa-mangsa; persaingan dinamik

INTRODUCTION

Hantaviruses are viruses carried by certain kinds of rodents 
and being significant pathogens, can cause hemorrhagic 
fever with renal syndrome (HFRS) and hantavirus 
cardiopulmonary syndrome (HCPS). 
	 In 1993, an outbreak of HPS occurred in the South 
West corner of USA resulting in a high mortaility rate. A 
basic mathematical model was developed by Abramson 
and Kenkre (2002) to simulate the spread of the virus 
and it was found to be able to replicate some features of 
the infection such as the sporadic disappearance of the 
infection and the existence of refugias for the rodents 
when environmental conditions are not favourable for the 
rodents (lack of water, food and shelter). Related studies 
on modeling for Hantavirus infection can be found in 
Abdul Karim et al. (2009), Abramson and Kenkre (2002), 
Abramson et al. (2003), Giuggioli et al. (2006), Goh et al. 
(2009) and Yusof et al. (2010). 
	 In a real ecosystem, rodents not only share the living 
environment with rodents but they have to share with others 
species. This resulted in inter and intra-species competition 
for resources (Peixoto & Abramson 2006). Based on 
the Peixoto and Abramson (2006) research, hantavirus 
infection is reduced by the influences of biodiversity, in 
which the alien population tends to reduce or completely 
eliminate the spread of infection when the alien and rodent 
populations survive in the ecosystem.

	 The issue aimed to study was the consequence if the 
second species or ‘alien’ is also a predator. According to 
Campbell et al. (2008), a predator is defined as a species 
which kills and eats the other animal (prey). This provides 
check and balance of population in an ecosystem so that 
the populations within the ecosystem don’t exceed the 
environmental limits. Predators have a range of effects 
on rodent populations, with some species causing chronic 
suppression and others causing boom-and-bust cycles 
or chaos. In interacting systems of predator, prey and 
pathogen, theory predicts that the loss of predators should 
tend to increase the absolute and relative number of 
infected prey (Ostfeld & Holt 2004).
	 Abramson and Kenkre (2002) have developed a 
mathematical model, based on differential equations, for 
the analysis of the spread of Hantavirus infection. The 
model was able to reproduce the temporal and spatial 
features that have been observed. The model of Abramson 
and Kenkre (AK) was extended by Peixoto and Abramson 
(2006) to study the influences of biodiversity the rodents 
population. Peixoto and Abramson (2006) studied the 
effect of biodiversity on the prevalence of the infection by 
using a model in which a non-host population competes 
with the host i.e. rodents. They showed that an existence 
of the second species has an important consequence for the 
prevalence of the infectious agent in the host. When the two 
rodent species survive in the ecosystem, the competitive 
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pressure of the second species may lead to reduction or 
complete elimination of the prevalence of the infection. 
There have also been recent works on predator-prey model 
by Rafikov et al. (2008). Rafikov et al. (2008) studied the 
theory of dynamic systems in relation to the mathematical 
modeling of biological pest control. From the numerical 
simulations, the results of the Rafikov et al. (2008) model 
shows that the steady value converges to the equilibrium 
where both the prey and predator population coexists in 
the form of a stable equilibrium. The increase in predators 
will cause the population of the prey to decrease.
	 Predators are not scavengers or decomposers but 
they are agents of mortality, feeding on living organisms. 
Predators can have a great impact on the size of prey 
populations and can even create population cycles 
(Smith & Smith 2009). According to Schurr (2003), if 
the population of the predator species falls, there will be 
rapid growth in the prey population due to the decrease 
of predator species. As the prey population increases, 
starvation rates among the predator species will drop which 
then causes the predator population to surge. The increase 
in predators will cause the prey population to decline and 
the surplus predators will die off due to lack of food and 
this cycle continues indefinitely.
	 The first aim of this paper was to conduct numerical 
experiments on the biodiversity one rodent, one alien 
model of Peixoto and Abramson (2006) to highlight the 
salient points of the model. The second aim was to develop 
and analyse the one rodent, one alien (as predator) model 
and the third aim was to conduct numerical experiments 
on the one rodent, one alien (as predator) model.

MATHEMATICAL EQUATIONS

Consider the basic model of Abramson and Kenkre (2002) 
which is of the form:

	

	
		
				  
where rs and ri are the populations of susceptible and 
infected rodents, respectively, where  r(t) = rs(t) + ri(t) is 
the total population of rodents. For abbreviation, we shall 
refer to this model as the basic AK model.
	 The value br represents the births of rodents, all of 
them born vulnerable to the infection at a rate proportional 
to the total population assuming that all rodents contribute 
equally to the reproduction process. The value c represents 
the natural death rate. The infection does not cause 
deaths among rodents. The value  or  represents 
a limitation process in the rodent population growth due 
to competition for resources shared between rs and ri. 
In the basic model, parameter k depends on time and 
is a ‘environmental parameter’. Higher values of the 
environmental parameter k represents higher availability 

of water, food, shelter and other resources for the rodents’ 
use to thrive. arsri represents the number of susceptible 
rodents that get infected due to an encounter with an 
infected rodent (e.g. bites from fights) at a rate a (assumed 
constant). The value a is known as the ‘aggression 
parameter’. Kenkre et al. (2007) states that rodent do not 
die, nor are impaired, from contraction of the virus. There 
is no ‘vertical transmission’ of the disease, i.e. there are 
no rodents born infected from parents who are infected. 
Furthermore, humans get the virus from the rodent but, in 
turn, have no feedback effects on the rodent in the infection 
process.
	 According to Abramson and Kenkre (2002), there 
is a critical value of the environmental parameter  

 that separates two distinctive regimes. If 

the environmental parameter k is smaller than kc, ri  tends 
to zero and the infection dies away. If k > kc, the infection 
thrives since there is an increase in resources. As the 
environmental parameter will vary with time, the system 
will undergo transitions from one state to another. 
	 Peixoto and Abramson (2006) extended the basic 
AK model by including an ‘alien’ population. The host 
is identified by the variable r, and the non-host ‘alien’, 
identified by z. The competition dynamics Peixoto and 
Abramson model can be written as:

	 	

	
where r represents the population of host and z represents 
the population of alien at any time t. All coefficients are 
positive constants. The meaning of terms in Peixoto and 
Abramson model is as follows:
	 The value  represents a limitation process in the 
rodent population growth. The parameter k depends on time 
and is a ‘environmental parameter’ of host in the absence 
of an alien population (z = 0). The value q represents 
the influence of the alien population and κ  represents 
a environmental parameter of alien population. The 
parameters β, γ and ε represent the analogous parameters 
(to b, c, q) for the alien population.
	 The one rodent one alien model developed by Peixoto 
and Abramson (2006) is given by:

	

	
	
	
	

where k represents something different than κ . But in this 
paper, the same environmental parameters i.e. k and κ  are 
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assumed for each species. The values of the parameter k 
and κ   chosen are the same for the population of rodents and 
alien to ensure both populations can compete and interact 
equally for resources in their ecological conditions. Thus, 
the one rodent one alien model becomes:	

	 	 (1)

where rs and ri are the population of susceptible and 
infected rodents, respectively,  r(t) = rs(t) + ri(t) is the total 
population of rodents, z  is the population of alien, a is 
the transmission rate of the infection, b is birth rate and c 
is the natural death. The parameter k depends on time and 
is a ‘environmental parameter’ in the absence of an alien 
population  and q is the influence of the alien population, 
z . For the alien population, β, γ, and ε are corresponding 
parameters.
	 According to Peixoto and Abramson (2006), there 
is a critical value of the environmental parameter  

 that separates three distinctive 

regimes. If the environmental parameter k is smaller than kc, 
the competitor population results greater than the minimum 
necessary to force the infected subpopulation to extinction. 
If k > kc , the system has a positive prevalence of infection. 
The point k = kc constitutes a critical point of the system, 
separating two behaviors that qualitatively differ in the 
stability of the equilibrium of the infected population. 
When the intensity of the interacting competition is not 
very high between rodent r and ‘alien’ population z, q < 1 
and ε < 1, then coexistence is stable. If the competition is 
strong, q > 1 and ε > 1, bistability occurs: the final state 
depends on the initial conditions and if q > 1 and ε < 1 (or 
q < 1 and ε > 1), only the strong competitor survives.
	 A further result is the existence of the critical 
amount of the aliens, a threshold level in the population 
of competitors, which drives the system completely to a 
non-infected state. This value is given by:

	 zc = 
			 

	 The critical initial value of the alien population that 
suppresses the spread of the infection is given by:

	 z(0) = 

								      
	 The above equation defines a minimum population 
of competitors that would inhibit the spread of a small 
outbreak of infection (Peixoto & Abramson 2006).

ONE RODENT ONE ALIEN (PREDATOR)

The work of Peixoto and Abramson (2006) is extended 
by assuming that the alien is a predator. The model of one 
rodent one alien (as predator) species is of the form:	

	 	 (2)

where rs and ri are the population of susceptible and 
infected rodents, respectively, r(t) = rs(t) + ri(t) is the total 
population of rodents and z represents the population 
of predator. For the predator population, β and γ are 
corresponding parameters and ε is the product of the per-
capita rate of predation and the rate of conversing rodent 
into predator.
	 The model is developed based on the following one 
prey one predator Lotka-Volterra model introduced by 
Rafikov et al. (2008),

	

where r and z are the populations of the prey and predator 
(natural enemies) at the time t, respectively. The parameters  
a1, b1, c1, a2 and b2 represent the intrinsic growth rate of 
prey, coefficient of intraspecific competition, per-capita 
rate of predation of the predator, death rate of predator 
and the product of the per-capita rate of predation and 
the rate of conversing prey into predator, respectively. All 
parameters are positive constants.
	 From Peixoto and Abramson model, the host 
population is maintained and then the population of the 
alien is modified by replacing with the predator population 
identified by the variable z. 
	 The result is the one rodent one alien (as predator) 
model as follows,

	
 
		
where for the host population, b is birth rate, c is the natural 
death rate, k is the environmental parameter and q is the 
influence of the predator population. For the predator 
population, β and γ are the corresponding parameters and 
ε is the product of the per-capita rate of predation and the 
rate of conversing rodents into predator. 
	 Suppose an internal classification of the rodent model 
is used where rs is the susceptible rodent, ri is the infected 
rodent and that r is the total rodent population

	 r(t) = rs (t) +ri(t).
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	 Then, the result is the one rodent one alien (as 
predator) model given is presented as in (2).

MODEL ANALYSIS 

The equilibrium values for susceptible, infected and alien 
(as predator) populations, rs, ri and z, respectively, are 

obtained by letting  and  in one 

alien, one alien (as predator) model of the system (2). The 
equilibrium of the system (2), namely E(0, 0, 0).
	 The stability of system (2) around equilibrium is 
determined by studying the eigenvalues of the characteristic 
equation at the equilibrium:	

The variational matrix of system (2) at the equilibrium is 
given by:

	

When J(0, 0, 0) = 0, then the variational matrix of system 
(2) at E takes the form of

	
 	
Now the characteristic equation of equilibrium E which is:

	 ((b – c) – λ)(– c – λ)(–(β – γ) – λ) = 0.
		
Clearly, λ2 = –c and λ3 = –(β – γ)  are always two negative 
eigenvalues. Other eigenvalue is given by λ1 = (b – c).  
Then, λ1 will be negative if b < c. Hence, the equilibrium 
E is locally asymptotically stable (Gui & Ge 2005). The 
choice of the parameters, a, b, c, k, q, β, γ, and ε influence 
the levels of rodents and alien populations at which this 
equilibrium is achieved. 

NUMERICAL EXPERIMENTS AND DISCUSSION OF RESULTS

Numerical experiments on the PA biodiversity i.e. one 
rodent, one alien and one rodent, one alien (as predator) 

models are conducted. Four scenarios will be considered; 
these scenarios are given by the same values of the 
parameter q and ε for predator models. The Matlab software 
ODE45 was used in all of our numerical experiments. The 
Runge-Kutta method is used to numerically solve the 
governing system of systems (1), (2). The parameters a = 
0.1, b = 1, c = 0.6, β = 1.0, γ = 0.5, q = 0.2 and  ε = 0.1 (q 
< 1 and ε < 1) are used as they were used by Peixoto and 
Abramson (2006). For all the predator models, the value 
of the parameter q chosen is the same for the population of 
susceptible and infected rodents to ensure both populations 
have the same strength in competition with the predator’s 
population z. Hence, the value kc = 25 represents the critical 
environmental condition for the basic AK model. The value 
k = 150 is used which means the environmental condition 
is favourable and thus the infection is thriving for basic AK 
model. Meanwhile z(0) = 160  is the critical value of the 
alien population when t = 0 in the rodent population. The 
duration of the simulation results is 20 years. 
	 Figures 1 and 2 show the rodent and alien populations 
for the case of k(= 150) > kc and z(= 20) < z(0) when one 
rodent, one alien and one rodent, one alien (as predator) 
models are solved, respectively, using the same initial 
values (= 50) for rs, ri, z = 20, q = 0.2 and ε = 0.1 (q < 1 
and ε < 1).

 FIGURE 1. Values of rs, ri  
and z for one rodent, one alien model 

with initial values rs = 50, ri = 50, z = 20, z(0) = 160, k = 150, 
q = 0.2 and ε = 0.1 (q < 1 and ε <1)

	 For one rodent one alien model, Figure 1 shows that 
the abundance of resources such as water and food at the 
initial stage will cause the infected population to increase 
sharply initially and reaches a certain maximum before 
plunging down and stabilizing at a steady value of 36 (after 
17 years). Since the infection was thriving initially, this 
reduces the population of susceptible rodents drastically 
before rising slightly and approaching a stable value when 
the infected numbers start to stabilize. After 3 years, the 
susceptible population rs will eventually stabilize at a 
steady value of 10. The increase in population of alien z  
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will initiate the population of susceptible rs and infected 
rodents ri  to decrease. This could be due to the population 
of alien z are better adapted to obtain the resources and can 
out-compete rodent population and maintain their breeding. 
After 18 years, the population of alien z will eventually 
stabilize at a steady value of 70.3. The steady value for 
alien population z is always higher than the value of rodent 
population. With k > kc, q < 1 and ε < 1, the competition 
is not very high between rodent population r and alien 
population z. Thus, the infection will remain. From the 
simulations, the positive equilibrium (rs*, ri*, z*) = (10, 
36, 70.3)  of system (1) is globally asymptotically stable 
where the populations of rodents and alien can coexist in 
a positive equilibrium (rs*, ri*, z*). The system can be 
stable around (rs*, ri*, z*) when environmental condition 
is favorable (k > kc), z < z(0), q < 1 and ε < 1.
	 For the one rodent, one alien (as predator) model, 
Figure 2 shows the abundance of resources such as 
food (rodents) at the initial stage will cause the alien (as 
predator) population z to increase sharply initially and 
reaches a certain maximum before plunging down and 
eventually goes to extinction (after 19.6 years). This could 
be due to the population of alien (as predator) z consume 
both infected ri and susceptible rodents rs. For a long time, 
there is no food for alien (as predator) z anymore, so the 
alien (as predator) population z goes extinct. Since the 
population of alien (as predator) z was thriving initially, 
this reduces the population of susceptible and infected 
rodents and the surplus alien (as predator) population z  
will die off when the susceptible and infected number 
starts to extinct. After 6.4 years, the susceptible rodents  rs will reduce to zero while the infected rodent ri become 
extinct (after 6.6 years). Thus, the infection will die 
away. The positive equilibrium (0, 0, 0) of system (2) is 
globally asymptotically stable. Both the rodents and alien 
(as predator) populations cannot survive and the system 
converges to the trivial equilibrium (0, 0, 0). The numerical 
simulation is given in Figure 2. This clearly indicates that 

the Hantavirus infection will dies off with the presence of 
the alien (as predator) populations. 
	 For the one rodent, one alien model, the infected 
population increases within the first year due to the more 
abundant resources that the rodents can use to thrive. At 
the first year, it reaches a certain maximum after which 
it starts to decrease probably due to the resources being 
almost used up during the peak population. Meanwhile the 
susceptible rodent population behaves in the opposite way 
which is quite expected since more resources mean more 
rodents are being infected and thus lessen the number of 
susceptible. For this model, the alien population amplifies 
caused by the further abundant resources that the alien can 
employ to flourish. After 18 years, the alien population will 
then reach steady stable values over some period of time 
with the number of alien population always exceeding 
the number of susceptible and infected rodents. In the one 
rodent, one alien (as predator) model, an increase in food 
(rodents) availability has only the effect of increasing the 
alien (as predator) population. After 19.6 years, the alien (as 
predator) becomes extinct when there is insufficient food 
(rodents). When q < 1 and ε < 1, the competition to survive 
are very strong between rodents and alien (as predator) 
populations. What is important here is that the population 
of alien (as predator) tends to eliminate completely the 
spread of the Hantavirus infection.
	 In all of the above models, the steady value of infected 
rodent ri is always smaller in the one rodent one alien 
(as predator) model compared with the one rodent, one 
alien model. It has the potential to reduce and control 
the outbreak of a disease. Thus, the introduction of an 
appropriate number of aliens (as predators) in an infected 
area may eliminate completely the spread of Hantavirus 
infection.
	 Figures 3 and 4 show the rodent and alien populations 
for the case of k(=150) > kc and z(=700) >z(0) when one 
rodent, one alien and one rodent, one alien (as predator) 
models are solved, respectively, using the same initial 
values (=50) for rs, ri, z = 700, q = 0.2 and ε = 0.1 (q < 1 
and ε < 1).
	 The increase of the initial amount of alien population, 
displays similar graphical pattern of numerical results. 
This is due to case of the alien population which is initially 
small for the one rodent, one alien model which have the 
same value of rs but with varying value of ri and z (by 
comparing Figure 3 and Figure 1). An increase in water 
and food availability does not affect susceptible rodent 
while the steady values for infected rodent and alien 
populations would change. The infected population ri will 
stabilize to steady value of 35.9 after 14 years. Meanwhile 
the susceptible and alien population will stabilize to 
steady values of 10 (after 3.2 years) and 70.4 (after 17 
years) respectively. The steady value for alien population 
z is always higher than the values of rodent’s population. 
This could be due to the population of alien z is better 
adapted to obtain the resources can out-compete rodents 
population and maintain their breeding. The positive 

FIGURE 2. Values of rs, ri  
and z for one rodent, one alien 

(as predator) model with initial values rs = 50, ri = 50, z = 20, 
z(0) = 160, k = 150, q = 0.2 and ε = 0.1 (q < 1 and ε <1) 
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equilibrium (rs*, ri*, z*) = (10, 35.9, 70.4)  of system 
(2) is globally asymptotically stable, all populations can 
coexist in a positive equilibrium (rs*, ri*, z*) when k > 
kc, z > z(0), q < 1 and ε < 1. The numerical simulation is 
given in Figure 3.
	 With the increase of the initial amount of alien (as 
predator) population, the numerical results display similar 
graphical pattern as the case of the alien (as predator) 
population is initial small for the one rodent, one alien (as 
predator) model which have the same values of rs, ri  and z 
but with varying value of time t (by comparing Figure 4 and 
Figure 2). The population of alien (as predator) z is initially 
large. Moreover the abundance of resources such as food 
(rodents) at the initial stage will cause the population of 
alien (as predator) z to increase sharply initially and reaches 
a certain maximum before plunging down and after a long 
time, the alien (as predator) z will die off due to the lack 
of food (rodent). The population of alien (as predator) z 
will tend to extinct after 19.2 years. However, the increase 
in z will cause the rodents population to decrease and 
eventually the rodents population goes to extinction. Both 
population of susceptible rs and infected ri go extinct 
after 5 years (Figure 4). This situation clearly represents 
the dynamics of a disease propagate among the alien (as 
predator). From simulations, the positive equilibrium (0, 
0, 0) of system (2) is globally asymptotically stable. The 
numerical simulation is given in Figure 4. This clearly 
indicates that the hantavirus infection will dies off with 
presence the alien (as predator) populations. 
	 All the cases of the one rodent, one alien (as predator) 
model display all populations are extinct. For all of the 
above cases, the steady state of values of alien population 
z is always higher than the corresponding value in the 
one rodent, one alien model. Moreover, the steady state 
of values of infected rodents ri is always slightly smaller 
than in the one rodent, one alien (as predator) model 
compared with the corresponding value in one rodent, 
one alien model. For the favourable condition (k > kc), 

z < z(0), z > z(0), q < 1 and ε < 1, the results of the one 
rodent, one alien (as predator) model shows the complete 
elimination of spread of infection hantavirus. With the 
increase of the initial amount of alien or alien (as predator) 
population, the steady state of values of infected rodent ri 
decrease for the both types of model. It has the potential 
to reduce and control the outbreak of a disease. However, 
the alien population is still alive owing to alternative 
source of food but the alien (as predator) population z 
becomes extinct occurred by insufficient food (rodents). 
For the one rodent one alien (as predator) model, the 
population of infected rodent ri becomes extinct within 
the short period of time in the case q < 1 and ε < 1. This 
is due to the alien (as predator) killing and eating all the 
rodents’ population. What is important to note here is that 
the population of alien (as predator) tends to eliminate 
the completely spread of Hantavirus infection.

CONCLUSION

In this paper, following the work of Peixotu and Abramson 
(2006), the effect of predator on the spread of hantavirus 
infection has been studied. Two different types of models 
have been analysed; namely, one rodent, one alien and 
one rodent, one alien (as predator) models. The number 
of both susceptible and infected rodents was reduced 
substantially using predation strategy. Interspecific 
competition can cause population of infected rodent ir  
to slowly extinct. The effect of competition between the 
population of susceptible and infected rodents have been 
studied together with the populations of alien over a period 
of time when higher resources are available. For situations 
where abundant resources are available, the population 
of alien may reduce the intensity of the infection. These 
numerical results showed that whether the infection rodent  ri is persistent depends on the initial amount of alien (or 
predator) population. The increased of the initial amount 
of alien population, the one rodent, one alien (as predator) 

 FIGURE 3. Values of rs, ri and z for one rodent, one alien model 
with initial values rs = 50, ri = 50, z = 700, z(0) = 160, k = 150, 

q = 0.2 and ε = 0.1 (q < 1 and ε <1)

FIGURE 4. Values of rs, ri and z for one rodent, one alien 
(as predator) model with initial values rs = 50, ri = 50, z = 700, 

z(0) = 160, k = 150, q = 0.2 and ε = 0.1 (q < 1 and ε <1) 
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model can reduce the hantavirus infection in the infected 
rodent within a short period of time compared with the 
one rodent, one alien model. These results suggested 
the possibility of control of the spread of the epidemic 
by introducing alien (as predator) in the areas of rodent 
populations in a suitable way although eliminate infection 
on the spread of Hantavirus outbreak.
	 The equilibrium points, existence, stability and 
numerical experiment of one rodent, one alien and 
one rodent one alien (as predator) models have been 
investigated. The stability of positive equilibrium solutions 
is investigated by linearizing the system of (1), (2) at the 
positive equilibrium solutions and analyzing the associated 
eigenvalue problem. The results from the condition for the 
existence and local stability of positive equilibrium E prove 
our main result on the stability of the positive equilibrium 
E of systems (1), (2). 
	 For the one rodent one alien (as predator) model, 
the system converges to the equilibrium where both 
susceptible and infected rodents cannot survive in the 
form of stable equilibrium when k > kc, z < z(0), z > z(0) 
and (q < 1 and ε < 1). The equilibrium points for the one 
rodent one alien (as predator) model are always smaller 
than the equilibrium points of the one rodent, one alien 
model. Thus, the simulation results showed that the 
equilibrium points for one rodent, one alien model are 
globally asymptotically stable. For one rodent one alien 
(as predator) model, all the populations become extinct if 
b > c when k > kc,  z < z(0) and (q < 1 and ε < 1). From 
the numerical simulations, systems (1) and (2) converge 
to the equilibrium point.
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